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Computer simulations have revealed the existence of a disorder-order phase transition in simple shear-
ing liquids [J. J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984)]. Above a certain shear rate, the motion of
the particles becomes ordered. This high-shear-rate structure, the so-called string phase, is studied nu-
merically in order to investigate the possibility of such a transition taking place in real systems. At first
we determined the optimal arrangements of spherical particles in the string phase. In the high-density
infinite-shear-rate limit, where the random thermal motion of particles is negligible, minimum energy
structures can be found as functions of density and interaction. We identify these structures and relate
them to equilibrium ones. Utilizing the symmetry of the limit structure, we perform nonequilibrium
molecular dynamics simulations at high but finite shear rates in order to study the coexistence conditions
of liquid and string phases as a function of periodic boundary symmetry and system size. The stability of
the string phase depends significantly on these aspects of the simulations. The larger the system, the less
stable the pure string phase is compared to the coexisting liquid-string formation. This calls into ques-
tion the existence of this phase transition in real shearing fluids. We also study the liquid-string transi-
tion in terms of the so-called phase space compressibility factor (A ), since it was found recently [D. J.
Evans and A. Baranyai, Phys. Rev. Lett. 67, 2597 (1991)] that this simple phase variable exhibits a local
extremum property even far from equilibrium. In the thermodynamic limit, { A) correctly estimates the
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shear rate at which the liquid phase becomes unstable in computer simulations.

PACS number(s): 64.70.Ja, 47.20.Ft, 61.20.Ja

I. INTRODUCTION

In computer simulations of nonequilibrium steady state
(NESS) systems, it is mandatory to remove the dissipative
heat produced by the external field (e.g., shear rate) in or-
der to maintain the steady state. This can be done most
efficiently by so-called synthetic thermostats which are
included explicitly in the equations of motion [1]. These
thermostats will not change the linear response of the
system. Far from equilibrium, however, the thermostat-
ting mechanism will influence the properties of the NESS
system. Thus different thermostats might produce
different properties for otherwise identical systems. For
planar Couette flow, the simplest and most popular ther-
mostats make the assumption that the streaming velocity
profile of the liquid is linear [so-called profile biased ther-
mostats (PBT’s)]. This must clearly be true close to equi-
librium. Away from equilibrium, however, kink instabili-
ties might develop with the result that the assumption of
a linear velocity profile cannot be maintained. In this
case it is crucial to apply a thermostat which correctly
takes into account the possibility of nonlinear flow
profiles [profile unbiased thermostats (PUT’s)] [1].

The paramount importance of correct thermostatting
became evident when nonequilibrium molecular dynam-
ics (NEMD) simulations revealed an interesting phase
transition in shearing liquids [2]. If the shear rate was
gradually increased, the amorphous liquid phase was ob-
served to change its structure: the particles were found
to organize themselves into strings. This new arrange-
ment reduces the stress in the system. Since then the
string phase has been the subject of disagreement in the
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literature [3]. The key question is whether this phase is a
mere artifact of the computational method [4] or a struc-
ture having its counterpart in real systems [5]. Ackerson
and Pusey have studied colloid suspensions, where they
found evidence of shear-induced ordering upon applica-
tion of an oscillatory field [6]. However, they did not find
an ordering transition induced by steady shear.

Simultaneous efforts have been under way in model cal-
culations. Evans and Morriss argued [1] that the ordered
phase is merely the result of the PBT mechanism. It
should be noted here that in simple model systems (con-
taining Lennard-Jones particles) the string phase is
formed under fairly extreme conditions. Since the pair-
wise additive, spherically symmetric Lennard-Jones po-
tential is considered to be a reasonable approximation for
the description of liquid argon, we can transform the
shear rate value of this transition into real units. The
shear rate ¥ necessary to turn a liquid into strings corre-
sponds to y > 10'? Hz using the parameters of liquid ar-
gon. In fact, it has been demonstrated in a realistic
NEMD simulation that this system is unable to remove
the viscous heat towards the boundaries. For shear rates
an order of magnitude smaller than the liquid-string tran-
sition value, the natural heat conductivity of the system is
insufficient to maintain steady conditions and the liquid
heats up [7].

The situation is somewhat different in charge-stabilized
colloidal suspensions where the surrounding solvent mol-
ecules act as a fast and efficient heat bath for the colloidal
particles. In this case, the existence of the liquid-string
transition of shearing colloidal particles cannot be ex-
cluded for the reasons mentioned above. It still must be
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decided, however, how the thermostat can be mimicked
correctly in simulations where the solvent molecules are
not modeled explicitly. Since it is not the purpose of this
paper to elaborate on the proper synthetic thermostats
for NESS systems, we simply report the observations that
string phases have been produced with PBT [2,9] and lay-
ered PUT [5,8] thermostats but it has proved impossible
with PUT’s [1,4].

The purpose of the present paper is to study the possi-
bility of this phase transition from another viewpoint.
Structural transformations observed during computer
simulations have very pronounced dependence on system
size and symmetry constraints. The properties of this
transition in terms of size and symmetry may shed some
light on the whole problem. To our knowledge a study of
this kind has not been performed to date.

Our first aim is to find the most stable structure of the
string phase. Without a suitable thermodynamic theory,
however, we have to restrict ourselves to the only well-
defined state of the system, the infinite shear rate limit at
high densities. The infinite-shear-rate limit is analogous
to some extent to the limit of absolute zero temperature
of equilibrium systems (crystalline solids), since the ran-
dom thermal motion of the particles relative to their hy-
drodynamic speed is negligible at high densities. Since
we know no practical way to determine the entropy or
free energy of the system we must estimate the limiting
structure from a simple potential energy minimization
procedure.

We assume that this limit structure is very close to the
structure of the string phase simulated at high but finite
shear rates. We can thus utilize the minimum energy
structure of the string phase in constructing our simula-
tion box. (This assumption is mandatory because to
determine the most stable structure of a string phase us-
ing simulations is impossible for both theoretical and
practical reasons. First, there is no accepted thermo-
dynamics for far-from-equilibrium systems; second, at
very high shear rates the numerical stability of the algo-
rithm requires very small time steps, even though the
structural changes are extremely slow.) By this assump-
tion, we hope to remove the familiar problem of equilibri-
um phase transitions: the disorder-order transition can-
not be simulated sensibly if the symmetry of the small
system hinders the formation of the ordered phase.

We use a simple approach in searching for the
minimum energy arrangement. The first step is to select
reasonable candidates as initial structures for an iterative
procedure. The selection of initial structures is based on
trivial and obvious symmetry and packing principles.
The iterative procedure identifies the minimum energy
structure in the neighborhood of the starting arrange-
ment.

In Sec. I, we describe in detail the scheme given above
and present the limit structure of the string phase for par-
ticles interacting with spherically symmetric short-
ranged potentials. In Sec. III, we report NEMD simula-
tions carried out by the Sllod algorithm [1] (so named be-
cause of its close relationship to the Dolls tensor algo-
rithm) for a simple shearing liquid. Our study is only fo-
cused on the characteristics of the liquid-string transi-
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tion. Emphasis is placed on the role of periodic boundary
symmetry in the fluid-string transition. Recently, an en-
tire phase diagram has been calculated for charge-
stabilized colloidal suspensions by Stevens and Robbins
[5]. Although their system is different from ours, we
make comparisons with their results relevant to the
present work. We also reproduce simulations of Yamada
and Nosé [10] in order to explain the remarkable direc-
tional dependence of the stability of the string phase
found by them. In the second part of Sec. III we investi-
gate the number dependence of the transition in terms of
simple phase variables. We calculate energy fluctuations
moving along the transition path. We also calculate the
so-called phase space compression factor [1]. Recently,
this quantity was found to exhibit a local extremum prop-
erty even far from equilibrium—at least approximately
[11]. It can be considered to be an extension of the
minimum entropy production principle [12] to far-from-
equilibrium situations. In the last section we conclude
the results of this study.

II. SEARCHING FOR MINIMUM ENERGY
STRING STRUCTURES

A. Symmetry considerations

We adopt the usual convention of computer simula-
tions: the liquid flows in the x direction and the velocity
gradient can be measured along the y axis. (y =3u, /dy.
Note that in our convention the shear rate is ¥ and not
dy/dt) In the y— o limit the randomness of the
thermal motion is negligible. The particles are moving
along straight lines parallel to the x axis. Their velocity
is determined solely by their y coordinates. The y and z
coordinates of the particles can change only if there is a
net force component in the y or z direction. If this hap-
pens, particles collide which generates further collisions,
thus increasing the energy of the system. Consequently,
any arrangement must maintain a strict symmetry, keep-
ing the forces in the y-z plane identically zero. (Obvious-
ly, if we prevent collisions we create an artificially nondis-
sipative system with zero x-y momentum flux.)

To avoid collisions the particles form strings or chan-
nels within which each of them has identical y coordi-
nate, i.e., streaming velocity. There is no reason to dis-
tinguish among these channels from the point of view of
symmetry. Due to the nonlinear repulsive forces acting
between particles, the more uniform the arrangement the
smaller the interaction energy. (We restrict our analysis
to particles interacting only with short-range repulsive
forces.) The best arrangement for dense, spherically sym-
metric objects in two dimensions is a hexagonal lattice. If
one looks at the y-z plane (i.e., at the distribution of the
channel centers perpendicular to the streaming motion) it
is reasonable to assume that these channel centers ap-
proximately form a hexagonal lattice in this plane. Ini-
tially it is impossible to tell whether this lattice is com-
pletely regular (has the highest possible symmetry) or is
only close to that. The hexagon in the plane can have
three principally different orientations. (See Fig. 1). The
first (I) represents the general case, when the hexagon is
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FIG. 1. Possible arrangements of particle channels (strings)
projected onto the y-z plane (I, II, and III) and the correspond-
ing x-z layers (A, B, and C).

arbitrarily oriented relative to the y or z axes. In the
second case (II) a side of the hexagon is parallel to the y
axis, while in the third case (III) a side is parallel to the z
axis.

In case I none of the neighboring strings have identical
y coordinates. Only particles in the same strings can
have identical velocities. Particles in neighboring chan-
nels will pass by infinitely fast relative to one another.
This means that in the y-z plane the arrangement should
be a regular hexagon with distance a between adjacent
strings. Let the interparticle distance within each chan-
nel (parallel to the x axis) be ¢. (See 4 in Fig. 1.) Clearly,
at a given density @ and ¢ should have an optimum value
when the energy of the arrangement is minimal.

Case II is quite similar to case I because particles hav-
ing the same y coordinates are not adjacent neighbors.
Nevertheless, for this arrangement we cannot assume a
perfect hexagon in the y-z plane. One should distinguish
two kinds of separations, a and b. As for the arrange-
ment in the x-z plane it is easily recognized that the sim-
ple string structure of A4 can be replaced by B when the
movement within channels of identical y coordinates is
synchronized. (See Fig. 1).

The third hexagon orientation (III) is distinct from the
previous two. The hexagon formed in the y-z plane need
not be perfectly symmetric as in case I. However, the
fact that adjacent channels have the same streaming ve-
locity requires substantial synchronization in the x-z
plane. The arrangement of the particles in the x-z plane
must be as uniform as possible because the interatomic
energies originating from particles with identical y values
remain constant. This two-dimensional structure is
shown in Fig. 1 as C. A perfect hexagon is formed in this
plane with uniform distances ¢. Particles in neighboring
strings are shifted by c¢/2 in the x direction relative to
one another. For this structure b=Vv'3/2c.

B. Results of the minimization procedure

The candidates described in the preceding section were
used to build unit cells and then lattices from the cells. A
simple program changed the x coordinates of the parti-
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cles in a stepwise manner according to their y coordi-
nates. This procedure mimicked the shearing motion of
the system without defining the actual speed of the parti-
cles. The configurations obtained in this way represent
consecutive snapshots of the system. Using periodic
boundaries, we determined the potential energy for every
configuration. We did this until the whole structure re-
turned to its starting arrangement. We then averaged the
configurational energy over snapshots of this whole
period. Formally we can write this method as

U~L S oM=L 3 F o) (1)
1 ’
M=, M= 5 !
where M is the number of snapshots. ¢ is the spherically
symmetric pair potential, N is the number of particles in
the box,

=[x/ =x [P+ (p;—p;) (2, — 2’12,

and xF=x*¥ "D+ A, with A, =8y, where § is a constant.
In the limit of vanishing 8, Eq. (1) approaches the in-
tegral

Smax
u=[ "™oNs)ds , )
0

in which x;(s)=x;(0)+sy;. The parameter S _,, is the
largest s; ... value where the latter is defined as
S; maxYimodL =0 and L is the edge length of the system.

Finally, we were searching for the minimum of the
average potential energy (U) in terms of the a,b, and ¢
structural parameters while keeping the density at a con-
stant value. In principle, this minimization procedure
can be performed analytically but due to the complexity
of the resulting expression we opted for the simplest pos-
sible numerical technique. Since the time required for
such calculations is small we mapped the energy values of
the structures as functions of the a, b, and ¢ parameters.
We then chose smaller increments and performed refined
calculations in the neighborhood of the a, b, and ¢ values
where the configuration energy per particle seemed to
have a minimum. The accuracy of the method is deter-
mined by the number of discrete distance steps, i.e., grid
size (8), applied for generating the configurations.

The calculations were performed at four different den-
sities, p=0.9, 1.0, 1.1, and 1.2. We applied three
different repulsive potentials. The WCA potential is
defined as f(r)=4(r 2—r~%+1 if r<2!% and zero
otherwise. The range of the soft sphere potential,
f(r)=r~12,is longer. The third potential is an exponen-
tial function: f(r)=exp[k(1—r)] where k=10.0. These
potentials were chosen in order to give similar energy
values. [If r=1 then f(r)=1 for all cases.] Their
different behavior at longer ranges, however, can result in
discrepancies originating mainly from second neighbor
interactions. Here we used the usual reduced units of
computer simulations [distances made dimensionless by
dividing by the molecule diameter o, energies made di-
mensionless by dividing by the characteristic interaction
energy €, number densities made dimensionless by multi-
plying by o3, strain rates made dimensionless by multi-
plying by (mo?/¢)!/?, and times made dimensionless by
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TABLE I. Properties of string unit cells at different densities using the WCA interaction model.
[The accuracy of distances (a,c) and potential energy per particle (U /N) is one unit in the last shown

digit.]
Structure I4 IIIC
Density a c U/N a c U/N
0.9 1.0807 1.0989 0.07421 1.1224-1.1284 1.1265-1.1224 0.0
1.0 1.0425 1.0624 0.51002 1.0687 1.0984 0.13148
1.1 1.0102 1.0287 1.517 69 1.0301 1.0679 0.72978
1.2 0.9816 0.9987 3.298 94 0.9986 1.0389 1.99272

dividing by (mo?/€)/?] [13].

In Table I we present the results for the case of the
WCA potential. The advantage of this potential form is
that there are no second neighbor interactions at these
densities at all. In the case of the 14 structure there are
only two different distances @ and ¢. The ¢ value is al-
ways larger because in the x direction the distances stay
constant during the motion, while a represents the dis-
tance between neighboring channels. Thus, a is the dis-
tance of closest approach of passing particles. Every par-
ticle has two neighbors at ¢ (one in front and the other
behind) and several others in the six adjacent channels.
The IIB structure is not shown in the table because for
the WCA potential a =b and the whole arrangement is
identical to the previous 1 4.

The comparison of the IIIC structure to I 4 shows that
the packing of the former arrangement is preferred: the
interatomic distances are larger so the energy per particle
(U/N) is smaller at each density. For IIIC at p=0.9
there is no interaction energy at all if the ¢ and ¢ dis-
tances are within the range shown in the table. As the
density increases, the interstring distance a shortens more
rapidly than ¢, because in this structure every particle has
six fixed neighbors.

Table II shows the same results as Table I for the case
of the soft sphere interaction model. It is obvious that
the resulting structural parameters are very similar to the
results in the previous table, even though the energies are
higher in this case due to the longer potential range. The
ITIC model gives lower energies than the 14 as in the
case of the WCA potential. However, the differences are
less pronounced.

The same results are shown in Table III for the case of
exponential repulsion. The exponential repulsion pro-
vides very similar structural parameters with slightly
higher energies than the »~!? repulsion. The IIIC ar-

TABLE II. Properties of string unit cells at different densi-
ties using the » ~!? repulsion model. [The accuracy of distances
(a,c) and potential energy per particle (U /N) is one unit in the
last shown digit.]

rangement again proves to be preferred over the 14
structure. The IIB structure is not identical to the 1 4 for
the latter two potentials but the differences are so small
in both structural parameters and energy that we also
omitted them from Tables II and III. The decrease in en-
ergy as a result of changing from A4 to B in the x-z plane
takes place in the fifth decimal digit. In fact, for a =b
this structure is slightly less favorable than 14 because
each particle interacts with more than two neighbors in
the x-z plane. This reduced favorability is roughly com-
pensated for by the split b > a, although the difference is
again very small.

The final conclusion of this calculation is that the op-
timal structure is the IIIC arrangement. The basic
characteristics of this structure have already been de-
scribed in the case of colloidal systems [5,14] where this
infinite shearing mechanism is inferred from the finite re-
sults. The strings form layers and these layers are sliding
on each other. It is worthwhile to analyze this structure
further. It is clear that the hexagonal arrangement in the
x-z plane fills the space more uniformly than the 4 or B
structure. Thus there is no point in considering III 4 or
IIIB combinations. In Fig. 2 the x-z projection of the
structure is shown. The circles mark the positions of par-
ticles and connecting lines emphasizing their hexagonal
arrangement. Black circles form a plane while gray cir-
cles form another one above or below this plane. The dis-
tance between two neighboring planes is V'3a. (Compare
to Fig. 1.) The strings or channels are marked by lines
parallel to the x axis.

The whole structure is only slightly different from the
face centered cubic (fcc) or hexagonal closed packed (hcp)
structures. In Fig. 3 we show two planes of these well-
known structures. (The two lattices can only be dis-
tinguished by viewing the third plane.) It can be seen

1_2

from the nonuniform (3-%) distribution of interchannel

TABLE III. Properties of string unit cells at different densi-
ties using the exponential interaction model. [The accuracy of
distances (a,c) and potential energy per particle (U/N) is one
unit in the last shown digit.]

Structure 14 IIIC Structure 14 IIIC
Density a c U/N a c U/N Density a c U/N a c U/N
0.9 1.082 1.096 12246 1.096 1.146 1.0817 0.9 1.083 1.094 14112 1.094 1.148 1.2720
1.0 1.045 1.058 1.8665 1.058 1.106 1.6487 1.0 1.046 1.056 2.0811 1.056 1.108 1.8906
1.1 1.012 1.028 2.7328 1.025 1.072 2.4138 1.1 1.013  1.023 2.9247 1.022 1.074 2.6748
1.2 0.983 0995 3.8704 0.996 1.041 3.4187 1.2 0985 0992 39550 0.993 1.043 3.6380
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FIG. 2. Projection of two adjacent layers of the IIIC struc-
ture onto the x-z plane. Atoms of the two layers are dis-
tinguished by their shades. The thicker lines emphasize the
hexagonal order in this plane. The thin lines represent paths of
motion of particle strings in the x direction.

distances that this arrangement is less favorable than the
IIIC. In Table IV we present the closest distances and
the potential energies for the equilibrium fcc and hcp lat-
tices at different densities. Comparing them to the prop-
erties of the IIIC structure under shear we can see the
inevitable energy increase caused by the streaming
motion of the particles.

We can relate the IIIC structure which is the minimum
energy structure of the string phase of one-component
spherical particles to its equilibrium minimum energy
structure, the fcc or hcp lattice. In the latter cases the
second (say, upper) layer of particles is formed by posi-
tioning each of them in the middle of neighboring parti-
cle triangles in the lower layer. In such a manner every
second possible tetrahedron is built up. In the IIIC struc-
ture the particles of the upper layer are placed in the
middle point of lines connecting particle neighbors in the

z

FIG. 3. The same as Fig. 2 for close-packed equilibrium
structures. The hcp and the fcc lattices could be distinguished
only by showing the third layer of the arrangements.
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first layer. The x position of these particles, however, is
changing continuously. Thus, the arrangement shown in
Fig. 2 is only momentarily the case.

Taking into account the shift between adjacent particle
layers described above the x, y, and z directions of the
IIIC structure correspond to the [110], [111],and [1 T 1]
fcc directions, respectively. Finally in Fig. 4 we show the
y-z plane of the IIIC structure. Different shades distin-
guish between particles in different y-z planes. As is evi-
dent, there are only second neighbors in the same y-z
plane.

III. THE FLUID-STRING PHASE TRANSITION
IN Sllod SIMULATIONS

A. Properties of the coexistence region in terms
of periodic boundary symmetry

Having determined the limit structure of the string
phase it is intriguing to compare it to structures realized
in NEMD simulations. These structures are observed at
finite T and y which means that they would not be ex-
pected to reproduce our limit structure perfectly. Study-
ing simulated string arrangements is much more difficult
due to the constantly changing positions. One must at-
tempt to grasp the characteristics of the systematic, syn-
chronized collective motion of particles. A simple but
reasonably informative way to do this is to monitor the
projections of coordinates in the y-z plane.

To spare further computational complications in this
work we used the Sllod algorithm in its simplest, stan-
dard PBT version [1]. This means that the formation of
strings is preferred in the course of our simulations, so we
cannot reach any conclusion which would support the
claim of the possible string formation in real systems.
The equations of motion for particle i are the following:

. P .
qz':“n’;"h?’yz‘ ’

p;=F,—iyp,,—ap; , (3)

where p, q, and F are the momenta, positions, and forces
acting on particle i. i is a unit vector in the x direction
and a is the thermostatting feedback multiplier. The
value of the multiplier is determined through the Nosé-
Hoover integral feedback method [13]

T_,

T, , 4)

a=

1
Q

N
where the temperature T=(1/3Nkm)3,;_,p? and T is
its preset value. Q is the fictitious mass of the heat reser-
Voir.

Stevens and Robbins have performed extensive calcula-
tions to determine phase diagrams for systems with a
different kind of potential modeling charge-stabilized col-
loidal suspensions [S]. They applied both PBT and a ver-
sion of PUT thermostats. [Since the shear rate has units
of frequency it would be convenient to replace ¥ with a
dimensionless quantity, the so-called Deborah number
(De). The Deborah number is defined as a product of the
shear rate and a characteristic relaxation time of the sys-
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TABLE 1V. Energy per particle (U /N) for close-packed structures (no shear present). In the case of
the WCA interaction there is no energy difference between the fcc and hcp structures.

p Closest U/N U/N U/N U/N U/N
distance WCA (1/r)? fec (1/r)*? hep exp. fcc exp. hcp
0.9 1.16258 0.0 0.9938 0.9943 1.1856 1.1857
1.0 1.122 46 0.0 1.5148 1.5155 1.7723 1.7725
1.1 1.087 36 0.2646 2.2178 2.2188 2.5197 2.5200
1.2 1.056 28 1.1616 3.1410 3.1425 3.4414 3.4419

tem. However, since there is no unique convention for
the choice of the relaxation time we retain the shear rate
as the independent variable.] Their nonequilibrium phase
diagram showed regions of ordered and disordered
(liquid) phases of colloids as functions of De and p,. The
latter symbol represents the concentration of the added
salt which screens the Coulomb repulsion between the
colloids. These independent variables were chosen in or-
der to facilitate the comparison with experiments.

Stevens and Robbins [S] paid particular attention to
the equilibrium solid-shear melted liquid region. To
determine the coexistence curve they formed an interface
of the two phases before starting the simulation. The in-
terface was created on the surface of the equilibrium
crystal of colloid particles. Our understanding of their
paper is that they determined the liquid-string (“reen-
trant solid”’) line in the same way (“two-phase method”)
as that of the equilibrium crystal-shearing liquid curve.
They found a very narrow coexistence region for this
transition using 864 or 768 particles.

Shear melting was out of the scope of our present study
because we are interested only in the upper part of the
phase diagram: the fluid-string transition region. We
employed an alternative way of removing the distorting
effects caused by the small system size applied in comput-
er simulations. We assumed—analogously to fluid-solid
phase transitions in equilibrium simulations—that the
ordering direction of the process is hindered much more
than the reverse transition. This gives rise to a pro-
nounced hysteresis as we alluded to earlier. In order to
decrease this effect we determined the transition line
starting from high-shear-rate simulations at a given tem-
perature. The system was formed by 512 particles having
IIIC initial symmetry. Since this structure must be very

FIG. 4. The y-z projection of the IIIC structure. The
different shades mark particles belonging to the same layer, i.e.,
having identical x coordinates instantaneously. Note that these
relative positions change in the course of streaming.

close to the high-y-limit arrangement for the string
phase, we expect to decrease the asymmetry between the
fluid— string and the string— fluid paths of the transition
substantially. Clearly, the liquid phase is less sensitive to
the chosen symmetry of periodic boundary conditions.
All the calculations reported in the following have been
performed in the same way. The symmetry of the simula-
tion box is IIIC unless written otherwise. The time incre-
ment in the integration step varied from 0.001 to 0.004 in
reduced units depending on T"and y.

In Fig. 5 we show a “phase diagram” calculated for
WCA particles at p=0.9. The symbol X marks the equi-
librium melting temperature which quickly decreases as
the shear rate increases. (This effect can only be studied
in simulations where the stress is the externally imposed
independent variable but we omitted these calculations
this time.) The area between the dotted and solid lines
represents the coexistence region of liquid and string
phases. Below this region the system forms an amor-
phous liquid (high-7, low-y region), while above this re-
gion the system is ordered (high-y, low-T region). We
found—in contrast to the results of Stevens and Robbins
[5]—a reasonably wide coexistence region. The upper
limit of this region is marked—decreasing ¢ gradually at
a given temperature and density —after the first irregular
arrangement appeared in the sample. At the value of the
lower boundary the ordered phase disappeared complete-
ly. The range of the coexistence region seems to widen
with increasing y.

T T T T T
5r liquid ~o— A+
string -+ <
4 | .
L 4
o 3+ . # coexistence -
5 string /
[}
iy
[ 2 -
Tr liquid
O x 1 1 1
0 0.2 0.4 0.6 0.8 1
temperature

FIG. 5. Nonequilibrium ‘“phase diagram” of a system con-
sisting of 512 WCA particles, at a reduced number density
p=0.9. A X marks the equilibrium melting point. (See text for
definition of reduced quantities.)
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It should be noted before moving on that the deter-
mination of an accurate phase diagram is a notoriously
difficult matter even for equilibrium systems. Thus we
cannot claim that Fig. 5 is “the phase diagram” of this
‘“phase equilibrium.” Obviously, the results are functions
of the details of the simulations and the particular
methods one uses to identify the phases.

In Fig. 6 we show snapshots of systems at the same
temperature but different shear rates. These pictures
were used to pinpoint transition lines of the phase dia-
gram shown in the Fig. 5. The circles represent particles
projected onto the y-z plane. In Fig. 6(a) one can see the
string channels where the particles are one on top of the
other. If one compares this figure to Fig. 4 it is easy to
identify the sixfold symmetry in the y-z plane. (The
mechanism is more or less a layer-over-layer sliding
motion.) The number of lattice defects is very small. In
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Fig. 6(b) the structure of the system in the coexistence re-
gion is visualized. The ratio of the area occupied by the
string and the disordered phase is roughly proportional
to the distance from the pure ordered or pure disordered
phase in the phase diagram, as in first order equilibrium
phase transitions. Figure 6(c) shows a disordered struc-
ture, close to the phase transition. In all three cases the
temperature was unity, the reduced number density
p=0.9, and the shear rates in Figs. 6(a), 6(b), and 6(c)
were 7.0, 2.8, and 2.5, respectively.

The coexistence of the fluid and string phases in the
simulation box has already drawn the attention of Erpen-
beck [2] and Yamada and Nosé [10]. They both found
the interface between the phases to be parallel to both the
flow direction and the velocity gradient. In our notation
this corresponds to the x-y plane. A snapshot of particles
in the y-z plane by Evans et al. [4] supports this finding.

(b}

&
&

FIG. 6. Snapshots of simulated particle arrangements projected onto the y-z plane, at T=1.0, p=0.9, and (a) y =7.0; (b) y =2.8;

(c) y=2.5. (See text for definition of reduced units).
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However, none of these authors have considered the
geometry of the simulation cell and the effect of its varia-
tion.

We considered the same system studied by Yamada
and Nosé [10], except for the exact form of the interac-
tion potential. We used the WCA rather than the usual
Lennard-Jones potential with a cutoff at r =2.9. We
chose the same number density, temperature, and shear
rate: p=0.8174, T =0.71, and y =2.42, respectively, all
in reduced units. We confirmed from our simulations
that at this point of the phase diagram the fluid and
string phases coexist. However, we also found that the
effect of the cell geometry on the structure is substantial.

We performed simulations with three different cell
geometries. The first was the one corresponding to the
IIIC structure which has been found to be optimal in the
infinite-shear-rate limit (see Sec. II). This time we omit-
ted the slight differences resulting from the minimization
procedure. The relative box lengths_in the x, y, and z
directions, L,, L,, and L,, were 1, V'3/2, and V'3/2, re-
spectively. Our second simulation box was one corre-
sponding to the fcc lattice geometry with its two-
dimensional close-packed layers in the x-z plane. The x,
y, and z directions of the box correspond to the [110],
and [111], and [TT1] fec directions, respectively. The
corresponding relative box lengths were 1, V2/V 3, and
V'3/2. The third simulation box considered was a simple
cube.

All these simulations were started from an equilibrium
liquid structure. The reason for this was not to bias any
of the initial box symmetries. The time increment in the
integration was 0.001. In the first two cases the number
of particles was 1728 whereas in the cubic box it was
1372. The runs were continued until the structure of the
system reached a steady state. In Fig. 7 we present
snapshots of the simulation boxes, where the positions of
all the particles (represented by small circles) are project-
ed onto the y-z plane. The pictures clearly illustrate the
difference between the results. Different simulation boxes
at the same density, temperature, and shear rate result in
structurally and energetically different phases.

In Fig. 7(a) one can see the coexistence of the ordered
and disordered phases, but the phase boundary is perpen-
dicular to the orientation found by Yamada and Nosé
[10]. The orientation of the phase boundary shown in
Fig. 7(a) was consistently found in our simulations when
the ITIC box geometry was used. In the next shapshot
[Fig. 7(b)] a different pattern of the string phase can be
seen, coexisting with the fluid phase. The string phase
has a clearly visible hexagonal symmetry, which is caused
by the shape of the simulation box. The orientation of
the phase boundary, however, seems to be parallel to the
velocity gradient, which was found by Yamada and Nosé
[10]. They have shown that this structure is more
favored than that rotated by 90° along the x axis. In
light of our results, we believe this is simply due to the
fact that the string phase favors the III structure [as
defined in the preceding section (see Fig. 1)] as opposed to
the I or II ones and this III—II change is the most im-
portant effect the 90° rotation has, since the liquid phase
is isotropic. In Fig. 7(c) we present a snapshot of the cu-
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bic simulation box. There is no string phase present, only
some vague ordering relative to an equilibrium liquid. In
Table V we collected some features of the three simula-
tions with different box symmetries.

B. Number dependence of the phase transition

We experienced that the structure of the string phase
and the properties of the transition strongly depend on
the symmetry imposed upon our model by the periodic
boundary conditions of the simulations. At this stage
there is another important question to be decided: what
is the number dependence of the transition? To obtain
sensible answers from a limited computation we must
narrow the scope of our study. In the following we re-
port on simulations carried out only with the IIIC period-
ic boundary symmetry. We believe that the other usual
shapes of the simulation box have little relevance to our
original question: What is the possibility of this transi-
tion taking place in real shearing fluids? In addition to
following the structural details of the system by coordi-
nate projections we monitored some simple phase vari-
ables showing drastic changes in this region.

The pressure and the viscosity as functions of shear
rate at a given temperature are clearly indicating the
phase transition. (See Fig. 8.) Nevertheless, it is quite
difficult to decide in the course of the simulation whether
the actual state of the system is pure shearing fluid or or-
dered string or their mixture of some ratio.

At equilibrium the second derivatives of thermo-
dynamic potential functions, the heat capacities in partic-
ular, are sensitive indicators of phase transitions. It is a
standard exercise in equilibrium statistical mechanics to
show that the isochoric heat capacity ¢, is proportional
to internal energy fluctuations, while the isobaric heat
capacity c, is related to enthalpy fluctuations. Due to the
probable split of the thermodynamic and kinetic tempera-
ture for NESS systems these simple equilibrium relation-
ships break down [15-18]. Heat capacities can be de-
rived using the Kawasaki distribution or transient time
correlation function formalism if one is interested in the
change of internal energy with respect to a change in the
kinetic temperature [1]. The resulting Kawasaki expres-
sion contains two terms. The first is simply the steady
state energy fluctuation which is larger in NESS systems
than in equilibrium. The contribution of the second
term, however, more than compensates for the increase in
internal energy fluctuations. Thus the isochoric heat
capacity turns out to be smaller in NESS systems than in
equilibrium [1].

The second term of this heat capacity expression is a
time correlation function which is difficult to evaluate.
On the other hand, we do not know how this expression
is related to NESS phase transitions. Therefore we calcu-
lated only the internal energy fluctuations as functions of
the external field. In Fig. 9 the internal energy fluctua-
tions per particle are shown for the 7"=0.5, p=0.9 sys-
tem. The system forms a crystalline solid at equilibrium.
The upper border of the fluid-string coexistence region is
around ¥y =1.5. (See Fig. 5.) At this shear rate the calcu-
lated energy fluctuations exhibit a much larger value than
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FIG. 7. (a) Snapshot of a simulated system projected onto the y-z plane, at 7=0.71, p=0.8174, ¥ =2.42, and N =1728. The shape
of the simulation box was that of the unoptimized IIIC unit cell. (b) The same as for (a), but the shape of the box was that of the fcc
unit cell with its two-dimensional close-packed layers in the x-z plane. (c) The same as in (a) and (b), but the simulation cell was cu-
bic, and the number of particles was 1372. (See text for definition of reduced units.)

either in the amorphous fluid phase or in the string
phase. This is the point where the amorphous structure
appeared when we moved from high-shear systems to
low-shear ones. The shape of the curve is reminiscent of
first order phase transitions between equilibrium phases.
This behavior seems to be in accordance with the overall
characteristics of the fluid-string transition. i

An even more promising quantity to study may be the
so-called phase space compression factor [1]. Recently,
Evans and Baranyai (EB) proposed a variational principle

TABLE V. Results of the three simulations of different
periodic boundary conditions. (All the quantities are given in
reduced units.)

Cell shape HIC fce Cubic
Pressure 5.65 6.21 7.71
(Energy)/N 1.74 1.83 2.08
Stress 1.59 1.94 3.09
(Energy fluctuation)/N 1.02 1.51 1.78




4006

4 T T T T T T T T T

3.5 -

T

3+ .

25

T
(4
1

2+ o ]

viscosity

15 .

1+ > y

0.5 [— (a) g ° 4

0
0.2 04 06 08 1

10.5 T T T T T T T T T

10 | 4

95 o _

7.5 i g

65 1 1 1 1 1 1 1 1 1

»
FIG. 8. (a) Shear viscosity plotted against y!/2 for a T =0.5,
p=0.9, and N=512 system. (b) The hydrostatic pressure
p=1Tr(P) is plotted against y3/* for the same system.

for nonequilibrium steady state systems [11]. They as-
sumed that under constant internal energy E, volume V,
and particle number N conditions the average of the
phase space compression factor (A ) is a local maximum
in terms of endogenous variables of the system. Accord-
ing to their definition endogenous variables are phase
variables which are not external parameters or general-

14 T T T T 1 T

0 1 L
0 0.5 1 1.5 2 2.5 3
shear rate

FIG. 9. Internal energy fluctuations of the system (N=512,
T =0.5, and p=0.9) as functions of the shear rate.
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ized thermodynamic forces (e.g., shear rate) of fluxes con-
jugate to these fixed forces. These variables are solely
functions of T'=(py;,py.-->PN>915D2 - - - >dy).  The
phase space compression factor is defined by the Liouville
equation

dinf(T,t)
dt ’

where f(I',t) is the probability density of the NESS sys-
tem in phase space and I' represents a point in phase
space.

The principle has not been proven rigorously but the
authors provided numerical evidence from NEMD simu-
lations [11]. Since then these numerical findings have
been supported by an approximate solution of the
Boltzmann equation [19]. It appears that the proposed
principle must be valid, at least approximately, for NESS
systems far beyond the linear irreversible regime.

This variational principle can be viewed as a nonlinear
generalization of the well-known minimum entropy pro-
duction principle of linear irreversible thermodynamics
[12], because close to equilibrium the two statements are
identical. Far from equilibrium, however, the generalized
statement bypass the ambiguities of entropy or entropy
production definitions because the phase space compres-
sion factor is a simple, microscopic phase variable. It is
easy to show that the phase space compression factor is
closely related to the thermostatting multiplicator [1].
For Sllod dynamics

A(I')=—=3Na(T')+o(1) . (6)

AT, t)=— (5)

The second term on the right-hand side of (6) represents
order 1 differences depending on the exact number of de-
grees of freedom.

The global behavior of the proposed extremum princi-
ple, however, has not been tested yet. The shearing
liquid-string phase transition provides a good opportuni-
ty to do so at least from the liquid side of the transition
where the instability of the amorphous liquid system is
beyond doubt in PBT Sllod dynamics. In Fig. 10(a) we
show —{A) /N (solid line) as a function of shear rate at
E/N=1.0, N=512, and p=0.9. —(A) /N quickly in-
creases with . Then at the coexistence region there is a
local minimum before it increases further in the string re-
gime.

The quantity {A) /N could be used as a variable hav-
ing extremum properties globally if and only if the two
curves corresponding to the two regimes join at the same
value in the coexistence region. Obviously, this is not the
case. However, we assume a strong number dependence
in the coexistence region so we calculated the same
curves for different system sizes (N =512, 1200, and
1728). These results can also be seen in Fig. 10(a). Our
assumption was completely justified: the phase space
compressibility factor behaves markedly differently for
different system sizes. (We note again that these calcula-
tions were also done with IIIC simulation box symmetry.)

There are two universal curves which have been
marked by arrows. [See both Figs. 10(a) and 10(b).] The
first is the liquid curve which is identical for all three
simulations irrespective of system size. We also identified
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a unique (number independent) string line but a reason-
able fit to this curve by simulation data could only be
achieved by small systems. (Data for smaller than 512
particle systems are not shown in the figure.) There are
differences in the transition region. In the case of the
N =512 system —{A)/N falls off vertically from the
liquid curve to the string line. Basically, there is no coex-
istence region at all. The larger the system the smaller
the gap between the liquid and the string curves while the
coexistence region increases. This is quite evident from
the —(A)/N values of the largest system. In fact, we
could not obtain pure strings for this system at all in the
reported shear-rate range. We performed some pilot cal-
culations for even larger systems but we found the same
result. The larger the system the more difficult to get the
pure ordered string phase despite the favorable periodic
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FIG. 10. (a) —(A)/N as a function of shear rate for three
different system sizes. The symbols represent the results of the
calculations. The uncertainty of these values is smaller than the
symbols shown. All these simulations were performed using
IIIC symmetry. (b) The same as (a) but the symbols of the simu-
lation results shown in (a) are removed. Only the number in-
dependent liquid and string curves are shown. Dashed lines are
extrapolations of these two (solid) curves to regions where we
could not calculate — (A ) /N directly. Open symbols represent
additional calculations with biased, y-z thermostat stabilizing
the string structure. Filled squares stand for simulations per-
formed using the x thermostat, so stabilizing the disordered
structure.

4007

boundary conditions and the profile biased thermostat.

There is a very appealing explanation for the strong
number dependence of the transition region on the disor-
dered liquid side. To form an interface in a small system
requires extra thermodynamic potential, whatever it
might be for this far-from-equilibrium situation. This
means that the pure shearing liquid phase is preferred to
coexistence in small systems. As the number of particles
increases the relative weight of the interface region gets
smaller so the phase transition can happen at lower shear
rates. In the thermodynamic limit one might expect the
transition to take place where the extrapolated, number
independent string line joins the liquid line. [See Fig.
10(b).] If this is so, the EB principle [11] is valid because
the system opts for the smallest possible —{ A ) /N value.

However, the behavior of the system at higher shear
rates is in contradiction with the EB principle. As the
system gets larger, the coexisting liquid and string phase
becomes preferred to the pure string. In the case of 1728
particles we could not get pure string phases in the
shear-rate range studied. Since the phase space compres-
sion factor’s value of strings is considerably lower than
that of the coexistence phase this behavior does not com-
ply with the extremum principle.

To eliminate possible problems related to the metasta-
ble character of the string phase we performed several
calculations with special thermostats. In the string phase
the particles have most of their kinetic energy (random
impulses) in the x direction. Designing the thermostat-
ting procedure in such a way that while keeping the ener-
gy of the system fixed we remove Kkinetic energy only
from the x direction we destabilize the string and help
the disordered liquid to be formed [20]. Doing this in-
versely and removing the energy only from the y and z
directions stabilizes the ordered phase.

In Fig. 10(b) we compare the curves of phase space
compressibility values with symbols originating from the
biased thermostat simulations. The universal liquid and
string curves are represented by solid lines. The dashed
lines are their extrapolations to regions we could not cal-
culate directly. The crossing of these two curves might
mark the transition in the thermodynamic limit that we
alluded to earlier. Open symbols show results when the
string phase was stabilized (y-z thermostats) and filled
squares refer to the opposite (x thermostat) when the
string phase was destabilized. In the N =1728 system the
x thermostat increases the shearing liquid part of the
coexistence phases but is not able to remove the strings
completely. Nevertheless, the higher phase space
compressibility is in accordance with the EB principle
[20].

As can be seen the y-z thermostat removes the liquid
part from the system of coexisting phases. The resulting
phase space compressibility factor gets onto the universal
string line. In the case of the small system it enables us
to extend the string region towards lower shear rates.
These results are in contradiction with the studies of
Evans and Baranyai [20] where the partial thermostats
provided higher —{ A ) /N values. To see that the stabili-
ty of the coexistence is not accidental, after a run with
the y-z thermostat we changed back to the normal x-y-z
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Gaussian thermostat. The pure string system returned to
the coexistence phase, which indicates that under these
conditions the coexistence phase is more stable than the
string.

It seems that as the system becomes larger the stability
of the pure string phase tends to be reduced relative to
that of the coexisting phase. In the thermodynamic limit
we may not obtain strings at all even in the artificial PBT
Sllod system.

IV. CONCLUSIONS

We studied the amorphous liquid — string phase transi-
tion taking place in strongly shearing Sllod model sys-
tems in order to evaluate the possibility of such a transi-
tion taking place in real systems.

First, using an iterative procedure, we identified the
most stable arrangement in the high-density, infinite-
shear-rate limit for several short-ranged repulsive poten-
tials. We showed how this structure is related to close-
packed equilibrium structures, are hcp and fcc lattices.

To avoid the problem of nonergodicity familiar from
the simulations of equilibrium phase transitions, we ap-
plied this limit structure as the starting arrangement in
the periodic system, thus stabilizing the string phase. A
further justification of this approach was that we could
explain certain structural peculiarities experienced by
others simulating similar systems [10]. We studied the
structural details of the transition in terms of periodic
symmetry imposed upon the model system. We found
that the symmetry constraints of the simulation manifest-
ed in the shape and the initial particle arrangement of the
system box are extremely important and must be taken
into account in similar studies.
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Performing simulations with the special symmetry of
the limit structure we experienced a much stronger ten-
dency of the ordered and disordered phases to coexist
than Stevens and Robbins did in their colloidal suspen-
sion model calculations [5]. The discrepancy can be attri-
buted to several factors different in these model calcula-
tions. However, for large systems we experienced
difficulties in simulating pure strings. These systems tend
to form coexisting phases over a reasonably wide range of
shear rates. Since both the profile biased synthetic ther-
mostat and the special symmetry of the periodic arrange-
ment prefer the string phase, we believe the string forma-
tion has an inherent instability. In light of these results,
we believe that calculations where stable “reentrant
solid” phases were found [5] should also be performed on
different (possibly very large) systems using different box
symmetries to see how these factors influence the proper-
ties of their model system.

We also studied the number dependence of the liquid-
string transition in terms of the so-called phase space
compressibility factor. We found that this quantity
might correctly indicate the decreasing stability of the
(PBT Sllod) shearing liquid phase in the thermodynamic
limit as the shear rate increases. Since the stability of the
string phase in this limit seemed to diminish we could not
reach definitive conclusions about the higher-shear-rate
behavior of the phase space compressibility factor.
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